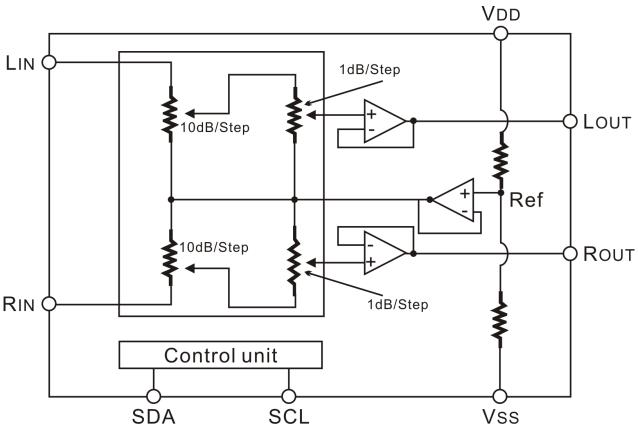
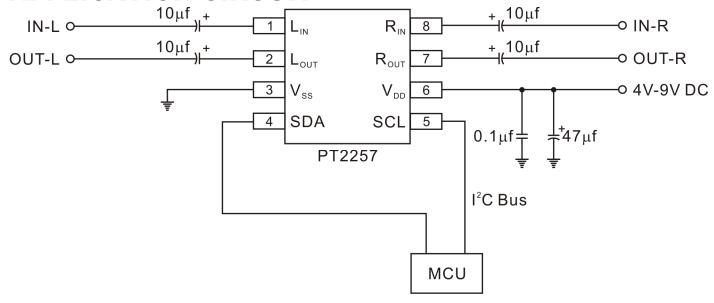
DESCRIPTION

The PT2257 is an electronic volume controller IC utilizing CMOS technology specially designed for the new generation of AV entertainment products. It has two (2) built-in channels making it ideally suitable for mono and stereo sound applications. The PT2257 provides an I²C control interface, an attenuation range of 0 to -79dB, low noise, and high channel separation. It is housed in an 8-pin, DIP or SOP package. The PT2257's pin assignments and application circuit are optimized for easy PCB layout and cost saving advantages.

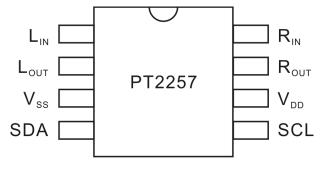

FEATURES

- CMOS technology
- Low power consumption
- · Least external components
- Attenuation range: 0 to -79dB at 1dB/step
- Operating voltage: 3 to 9V
- Low Noise, S/N Ratio>100dB (A-weighting)
- Two channel output
- Available in 8-pin, DIP or SOP


APPLICATIONS

- AV surround audio equipment
- Car audio
- Mini compo
- Computer multi-media speaker
- Other audio equipment

BLOCK DIAGRAM


APPLICATION CIRCUIT

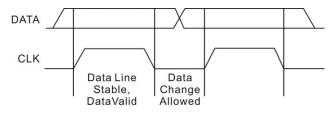
ORDER INFORMATION

Part Number	Package Type	Top Code
PT2257-D	8-Pin, DIP, 300mil	PT2257-D
PT2257-S	8-Pin, SOP, 150mil	PT2257-S

PIN CONFIGURATION

PIN DESCRIPTION

Pin Name	I/O	Description	Pin No.
1		Left input channel	1
L _{IN}	'	Connect a capacitor to audio source	I I
		Left output channel	2
L _{OUT}		Connect a capacitor to audio output	2
V_{SS}	-	Ground	3
SDA	I	I ² C data input	4
SCL	I	I ² C clock input	5
V_{DD}	-	Power supply	6
В	0	Right output channel	7
R_{OUT}		Connect a capacitor to audio output	/
В		Right input channel	0
R _{IN}	'	Connect a capacitor to audio source	8


FUNCTION DESCRIPTION

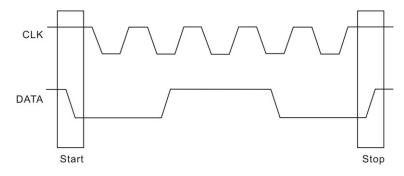
BUS INTERFACE

Data are transmitted to and from the microprocessor to the PT2257 via the SDA and SCL. The SDA and SCL make up the BUS Interface. It should be noted that the pull-up resistors must be connected to the positive supply voltage.

DATA VALIDITY

A data on the SDA Line is considered valid and stable only when the SCL Signal is in HIGH State. The HIGH and LOW States of the SDA Line can only change when the SCL signal is LOW. Please refer to the figure below.

START AND STOP CONDITIONS

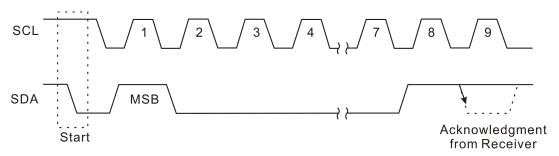

A Start Condition is activated when

- 1. The SCL is set to HIGH and
- 2. SDA shifts from HIGH to LOW state.

The Stop Condition is activated when

- 1. SCL is set to HIGH and
- 2. SDA shifts from LOW to HIGH state.

Please refer to the timing diagram below.



BYTE FORMAT

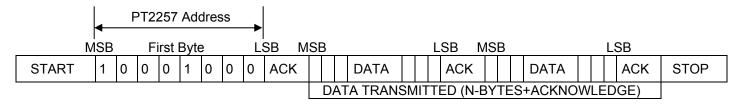
Every byte transmitted to the SDA Line consists of 8-bit. Each byte must be followed by an Acknowledge Bit. The MSB is transmitted first.

ACKNOWLEDGE

During the Acknowledge Clock Pulse, the master (μ P) puts a resistive HIGH level on the SDA Line. The peripheral (audio processor) that acknowledges has to pull-down (LOW) the SDA line during the Acknowledge Clock Pulse so that the SDA Line is in a Stable Low State during this Clock Pulse. Please refer to the diagram below.

The audio processor that has been addressed has to generate an Acknowledge after receiving each byte; otherwise, the SDA Line will remain at the High Level during the ninth (9th) Clock Pulse. In this case, the master transmitter can generate the STOP Information in order to abort the transfer.

TRANSMISSION WITHOUT ACKNOWLEDGE


If you want to avoid the acknowledge detection of the audio processor, a simpler μP transmission may be used. Wait one clock and does not check the slave acknowledge of this same clock then send the new data. If you use this approach, there are greater chances of faulty operation as well as decrease in noise immunity.

INTERFACE PROTOCOL

The interface protocol consists of the following:

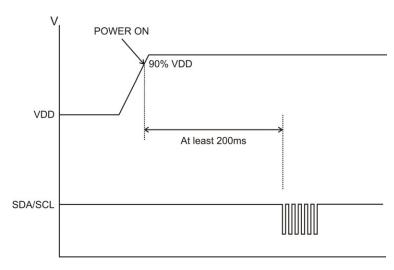
- A Start bit
- A Chip Address byte=88H
- ACK=Acknowledge bit
- A Data byte
- A Stop bit

Please refer to the diagram below:

Notes:

- 1. ACK=Acknowledge
- 2. Max. clock speed=100K bits/s

SOFTWARE SPECIFICATION


PT2257 ADDRESS

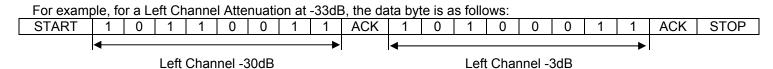
PT2257 Address is shown below:

Ī	1	0	0	0	1	0	0	0
	MSB							LSB

I²C BUS INTERFACE START TIME

After Power is turned ON, PT2257 needs to wait for a short time in order to insure stability. The waiting time period for PT2257 to send I²C Bus Signal is at least 200ms. If the waiting time period is less than 200ms, I²C Control may fail. Please refer to the diagram below.

DATA BYTES DESCRIPTION


FUNCTION BITS

MSB	2	3	4	5	6	7	LSB	Function
1	1	1	1	1	1	1	1	Function OFF (-79dB)
1	1	0	1	A3	A2	A1	A0	2-Channel, -1dB/step
1	1	1	0	0	B2	B1	В0	2-Channel, -10dB/step
1	0	1	0	A3	A2	A1	A0	Left Channel, -1dB/step
1	0	1	1	0	B2	B1	В0	Left Channel, -10dB/step
0	0	1	0	A3	A2	A1	A0	Right Channel, -1dB/step
0	0	1	1	0	B2	B1	В0	Right Channel, -10dB/step
							2-Channel, MUTE	
0	1	1	1	1	0	0	М	When M=1, MUTE=ON
								When M=0, MUTE=OFF

ATTENUATION UNIT BIT

A3	A2/B2	A1/B1	A0/B0	Attenuation Value (dB)
0	0	0	0	0/0
0	0	0	1	-1/-10
0	0	1	0	-2/-20
0	0	1	1	-3/-30
0	1	0	0	-4/-40
0	1	0	1	-5/-50
0	1	1	0	-6/-60
0	1	1	1	-7/-70
1	0	0	0	-8/
1	0	0	1	-9/

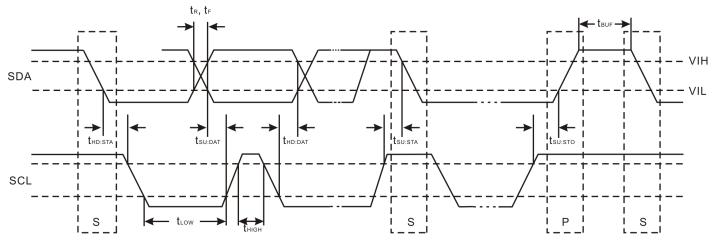
Where: Ax=-dB/step, Bx=-10dB/step

V1.5 6 March 2013

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Supply voltage	VDD	12	V
Operating temperature	Topr	0 to +70	$^{\circ}\mathbb{C}$
Storage temperature	Tstg	-40 to +150	$^{\circ}\mathbb{C}$
Input voltage	V _I	-0.3 to V _{CC} +0.3	V

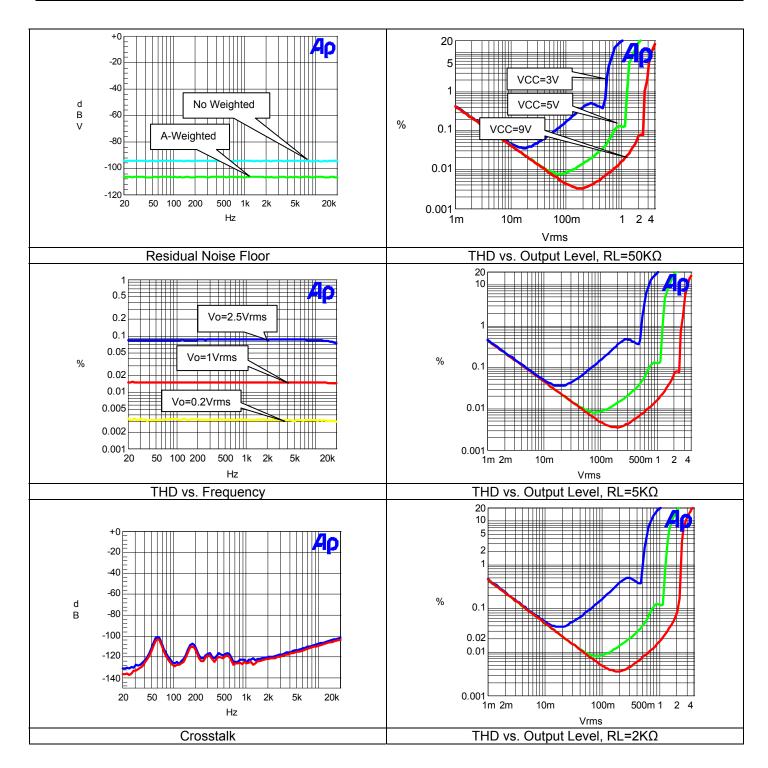
AUDIO SECTION ELECTRICAL CHARACTERISTICS


Parameter	Symbol	Cond	ditions	Min.	Тур.	Max.	Unit
Operating voltage	VDD			3	9	10	V
Operating current	IDD		9V, V _I =0V	-	9	15	mA
Volume attenuation range	ARANGE		Attenuation	-0.5	0	-	dB
		Maximum	Attenuation	-72	-79	-	
Attenuation step	ASTEP			-	1	-	dB
Joint step gain error	GERR			-	0.5	-	dB
Inter-channel attenuation gain error	CERR			-	0.5	-	dB
Maximum output level	Vomax	Rload=50	Iz Volume Att=0dB K, THD<1%	2.0	2.3	2.5	Vrms
Total harmonic distortion	THD	F =1KHz, Volume Att=0dB, A-weighted	Vout=2Vrms	-	0.07	0.09	%
		Rload=50K	Vout=200m Vrms	-	0.003	0.005	
Noise output	No	Vin=GND, MUTE=OFF Volume Att=0dB, A-weighted		-	2	3	μVrms
G: 14 N : 1:	OND	0dB=Vomax,	22~22KHz	90	100	103	dB
Signal-to-Noise ratio	SNR	ATT=0dB	A-weighted	110	120	123	
Channel separation	CS	Vin=2.5Vrms, F=	1KHz,Volume=0dB	100	120	125	dB
Mute attenuation	MUTE		ms, F=1KHz dB, A-weighted	90	95	97	dB
Frequency response	FR	Vin=1Vrms, Volume Att=-10dB		-	1	1.3	MHz
Input impedance	Rin	F=1KHz		15	20	26	ΚΩ
Output impedance	Rout	F=1KHz, Vo	ut=100m Vrms	-	100	-	Ω
Minimum load resistance	Rload	VDD=9V, Vo=	2Vrms,THD<1%	2	-	-	ΚΩ

I²C BUS SECTION ELECTRICAL CHARACTERISTICS

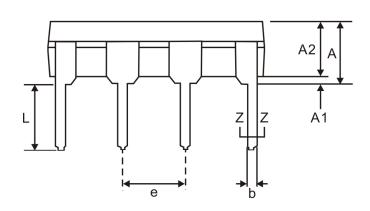
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Bus high input level	VIH	VDD=9V	0.4	-	VDD	VDD
Bus low input level	VIL	VDD=9V	0	-	0.2	VDD

BUS LINE TIMING CHARACTERISTICS

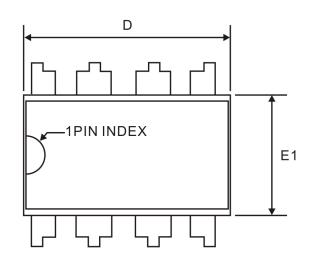


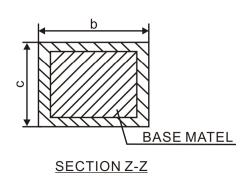
Parameter	Symbol	Condition	Min.	Max.	Unit
Low level input voltage	V_{IL}	VDD=4.0V	-0.5	1.1	V
High level input voltage	V_{IH}	VDD=4.0V	1.6	4.0	V
SCL clock frequency	f _{SCL}	=	0	100	KHz
Time the bus must be free before a new transmission can start	t _{BUF}	-	5.0	-	μs
Hold time start condition ^(Note1)	t _{HD-STA}	-	4.0	-	μs
Clock low period	t _{LOW}	-	5.0	_	μs
Clock high period	t _{HIGH}	-	4.0	-	μs
Setup time for start condition ^(Note2)	t _{SU-STA}	-	5.0	_	μs
Data hold time	t _{HD-DAT}	-	0	-	μs
Data setup time	t _{SU-DAT}	-	250	-	ns
Rise time (SDA & SCL Lines)	t _R	-	-	1000	ns
Fall time (SDA & SCL Lines)	$t_{\scriptscriptstyle{F}}$	-	-	300	ns
Stop condition setup time	t _{su-sto}	-	4.0	_	μs

Notes:

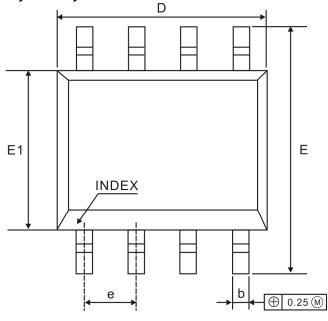

^{1.} The first clock pulse is generated after this period.

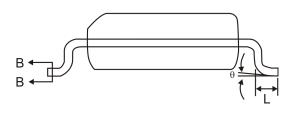

^{2.} This is only relevant for a repeated start condition.

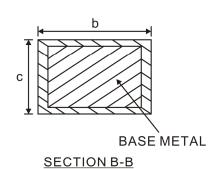


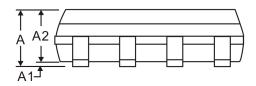

PACKAGE INFORMATION

8-PIN, DIP, 300MIL


Symbol	Min.	Nom.	Max.
Α	-	-	4.80
A1	0.50	-	-
A2	3.10	3.30	3.50
b	0.38	-	0.55
С	0.21	-	0.35
е		2.54 BSC.	
D	9.10	9.20	9.30
E	7.62	7.87	8.25
E1	6.25	6.35	6.45
L	2.92	3.30	3.81


Notes:


^{1.} Refer to JEDEC MS-001 BA.


^{2.} All dimensions are in millimeter.

8-PIN, SOP, 150MIL

Symbol	Min.	Nom.	Max.
Α	1.35	1.60	1.77
A1	0.08	0.15	0.28
A2	1.20	1.40	1.65
b	0.33	-	0.51
С	0.17	-	0.26
е		1.27 BSC	
D	4.70	4.90	5.10
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
Ĺ	0.38	0.60	1.27
θ	0°	-	8°

- Notes: 1. Refer to JEDEC MS-012 AA.
- 2. All dimensions are in millimeter.

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian Dist., New Taipei City 23145, Taiwan Tel: 886-2-66296288

Fax: 886-2-29174598 http://www.princeton.com.tw