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Abstract 
 
A new continuous conduction mode (CCM) PFC controller, named ICE1PCS01, is developed based on a 
new control scheme. Compared to the conventional PFC solution, the new IC does not need the direct sine-
wave sensing reference signal from the AC mains. Average current control is implemented to achieve the 
unity power factor. This application note provides a model and a tool for evaluating and improving the control 
loop characteristics of ICE1PCS01-based PFC pre-regulators in boost topology. The goal is not only to 
ensure a narrow bandwidth in order to achieve a high Power Factor, but also to have enough phase margin 
so as to make sure the system is stable over a large range of operating conditions. The design example is 
demonstrated as well. 
 

1 Introduction 
 
Traditional diode rectifiers used in front of the electronic equipment draw pulsed current from the utility line, 
which deteriorates the line voltage, produce radiated and conducted electromagnetic interference, leads to 
poor utilization of the capacity of the power sources. In compliance with IEC 61000-3-2 harmonic regulation, 
active power factor correction (PFC) circuit is getting more and more attention in recent years. For low power 
up to 200W, discontinuous conduction mode (DCM) PFC is popular due to its lower cost. Furthermore, there 
is only one control loop, i.e. voltage loop, in its transferring control blocks. The design is easy and simple for 
DCM operation. However, due to its inherent high current ripple, DCM is seldom to be used for high power 
applications. In high power applications, continuous conduction mode (CCM) PFC is more attractive.  
 

  

 V, I
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IIN
 

DCM operation    CCM operation 
 

Figure 1 DCM and CCM PFC principle 

 
In the conventional CCM topology, there are two control loops called voltage loop and current loop in its 
transfer function. Because of this, the control circuit of CCM is complicated and the Pin count of CCM PFC 
controllers is often high. New CCM PFC controller, named ICE1PCS01, is developed to simplified and cost 
down the design. It has only 8 pins. Moreover, numerous protection features are integrated according to 
Failure Mode Effect Analysis (FMEA). The typical application of the new PFC controller, named ICE1PCS01, 
is shown in Figure 2. It has only 8 pins and there is no direct sin-wave sensing signal fed into the IC. 
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Figure 2 Typical application circuit of ICE1PCS01 

 
In this application note, the control loop compensation design of ICE1PCS01 based boost topology CCM 
PFC is described in detail. 
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2 How to achieve PFC function without sinusoidal reference 
sensing 

2.1 Boost converter modeling 

Figure 3 shows the inductor current waveform for boost converter operating in continuous conduction mode. 

diL

iL

TSW

ton toff

I0

 
Figure 3 inductor current waveform of boost converter operating in CCM mode 

 
assuming Vin is boost converter input DC voltage, Vout is the boost converter output voltage, L is the boost 
choke inductance, ton is the on time duration in one switching cycle, toff is the off time duration in one 
switching cycle, doff is the off time duty cycle and Tsw is the time duration in one switching cycle. 
 
During “on” interval,  

L
V

dt
di inL =             (1) 

 
During “off” interval, 

L
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And then the boost inductor current variation after one switching cycle is: 
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The instant boost inductor current after n switching cycle is: 
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2.2 PFC IC control principle with boost topology 
PFC IC control block is inserted in boost converter as shown in Figure 4. 
 

Vin Boost converter iL

IC PWM modulation
doff=K*iL

doff

SW
noffnoutnin

nLnL T
L

dVV
ii ⋅

⋅−
+= −

___
1__

 
Figure 4 PFC current loop principle 

 
IC senses boost inductor average current, and calculate the off duty cycle to be proportional to inductor 
current, and then send such off duty cycle back to boost converter. The negative feedback loop can be seen 
from Figure 4. A small disturb increasing on iL will result in a little bit increasing on off duty cycle. The 
increasing off duty cycle will lead to decreasing of iL after processing by boost converter. In the stead state,  

Loutoffoutin iKVdVV ⋅⋅=⋅=           (5) 
 
Where, K is the modulation gain defined by IC. It can be seen that boost inductor current shape follows AC 
input voltage and it is how PFC function to be achieved. 
 
In the following sections, detail mathematical analysis of current loop and voltage loop will be described and 
the transfer function for each block is given in order to design IC external compensation network 
components. 
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3 Current Loop Regulation and Transfer Function 
 
The detail block diagram of current loop for ICE1PCS01 is shown in the Figure 5. The boost converter stage 
Kboost is elaborated in S-plane. 
 

Boost Converter Power Stage
Kboost(s)

PWM
Comparator

Kc(S)

iL

Current Averaging
Kave(S)

M2

Vicomp

M1

Doff

VinVout

+
-X 1/sL

 
 

Figure 5 Block diagram of current loop 

 

3.1 Current Averaging Circuit 
 
IC sense the boost inductor current via shunt resistor Rsense as shown in Figure 2. The sensing signal is 
sent to Isense Pin. As the voltage in Isense Pin is negative signal together with switching ripple, IC need to 
do signal averaging and convert the polarity to positive for following PWM modulation blocks. The output of 
averaging block is Vicomp voltage at Icomp Pin. the block diagram of current averaging block is shown in 
Figure 6. 
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ICOMP
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ISENSE

Offset_low load
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M1

To PWM comparator

Multiplier

R7
7k R501

49k

Current Mirror
1:1

IM=I1*M1

I1=Vicomp/R501

 
Figure 6 current averaging block diagram 

 
The transfer function of averaging circuit block can be derived as below. 
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where, K1 is a ratio between R501 and R7 which is equal to 7, Cicomp is the capacitor at Icomp Pin, gOTA2 is 
the trans-conductance of the error amplifier of OTA2 for current averaging, typical 1.1mS as shown in 
Datasheet, M1 is the variable controlled by voltage loop.  
 
The function of the averaging circuit is to filter out the switching current ripple. So the corner frequency of the 
averaging circuit fAVE must be lower than the switching frequency fSW. Then,  

AVE
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C

π21

12

⋅
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3.2 PWM comparator block 
The averaged Vicomp signal is sent to PWM comparator block and compared with internal triangular ramp 
signal to derive duty cycle. The timing diagram of this block is shown in Figure 7. 
 

C1

PWM
Comparator

Vramp=M2*Kfq

Tosc

Vicomp
From protection logic

To PWM logic and
gate driver block

Ramp

Gate drive

Vicomp

Oscillator
 

 
Figure 7 The block diagram and timing sequence of PWM comparator block 

 
The operating principle is explained as following. Gate output is in “low” state in the beginning of the each 
cycle. Gate output is turned to “high” at the intersection of the triangular ramp signal and Vicomp signal. Gate 
output is turned to “low” by oscillator synchronous signal. Based on the operating principle, the transfer 
function of KC(s) is: 

2

1)(
MKV

d
sK

FQicomp

off
C ==           (8) 

 
Where, KFQ is a design constant which is equal to 9.183, M2 is the variable controlled by voltage loop. 

3.3 Boost converter stage 
The transfer function of boost converter stage KBoost(s) can be obtain via State-Space Averaging method. 
Combining equation (1) and (2) by state –space averaging,  
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Make Laplace transformation for equation (9) with assuming Vin and Vout are constant for current loop 
analysis, 

sL
sdVVsi offoutinL

1))(()( −=           (10) 

 
The equation (10) has been described in current loop block diagram in Figure 5. Although Vin is not 
physically sensed by circuit, the input sinusoidal signal is presented in transfer functions only if 
boost topology is applied. 

3.4 Open loop transfer function gain for current loop 
The open loop gain of current regulation loop is: 
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The selected Cicomp must also meet the requirement that the cross over frequency of the current loop fC is 
much lower than the switching frequency fSW.  

3.5 Steady state solution of IL 
Solving the current loop in Figure 5, 
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For AC line frequency which is much lower than fC, then GC(s)>>1, 
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For AC line frequency which is also much lower than fAVE, then the steady state IL can be derived as 

outsense

inFQ
L VRK

VMMK
I

1

21=            (14) 

from the above steady state solution of IL, it can be seen that the choke current IL is always following 
input voltage Vin. This is how PFC function is achieved. 
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4 Voltage Loop Compensation 
 
The control loop block diagram for ICE1PCS01 based CCM PFC is shown in Figure 8 and Figure 9. There 
are four blocks in the loop. IC PWM Modulator G2(s) has been discussed in above Section 3. the rest of them 
are Error Amplifier G1(s), nonlinear block GNON(s), boost converter output stage G3(s) and Feedback Sensing 
G4(s). 
 

Error Amplifier
G1(s)

Vref + Vcomp PWM Modulator
G2(s)
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VoutBoost converter
output Stage

G3(s)

Feedback
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-

Vin
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Vcomp_DC

Nonlinear block
GNON(s)

M1M2

 
 

Figure 8 Large signal modeling of voltage loop 
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Figure 9 Small signal modeling of voltage loop 

 

4.1 Boost converter output stage G3(s) 
 
Boost converter output stage is described as influencing of variation on iL to bulk output voltage Vout. The 
transfer function of power stage, G3(s), is separated to two stages as: 
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where Vout is the DC output voltage, Iout the DC output current and IL_rms is the boost inductor current. 
 

4.1.1 ∆Vout / ∆Iout 
 
Under the above assumption, the power stage can be modeled as illustrated in Figure 10: a controlled 
current source (with a shunt resistor Re) that drives the output bulk capacitor Cout and the load resistance 
Rout (= Vout / Iout). The zero due to the ESR associated with Cout is far beyond the crossover frequency thus 
it is neglected. 
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Re RoutIout VoutCout

 
Figure 10 Power stage modeling 

 
A few algebraic manipulations would show that the shunt resistor Re always equals the DC load resistance 
Rout, thus it changes depending on the power delivered by the system. There are two kinds of load in the 
application. Two cases will give a different result in case of resistive load or constant power load. For purely 
resistive load, the AC load resistance equals Ro. In case of constant power load like additional isolated PWM 
DC/DC converter, the AC load resistance is equal to -Ro (if the DC bus decreases, the current demanded of 
the PFC increases. hence the negative sign is shown.). As a result, the parallel combination with Re tends to 
infinity and the two resistances cancel. The current source drives only the output capacitor. The result is 
summarized as below: 
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In this application note, the calculation is only carried out for constant power load situation 
 

4.1.2 ∆Iout / ∆IL_rms 
 
The current source Iout can be characterized with the following considerations as shown in Figure 11. The 
low frequency component of the boost diode current is found by averaging the discharge portion of the 
inductor current over a given switching cycle. The low frequency current, averaged over a mains half-cycle 
yields the DC output current Iout: 
 

iL idiode

IOUT

IL_PK

 
Figure 11 The simplification and characterization for Iout / IL_rms 

 

Resistive Load  

Constant Power Load  
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So,  
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where, Don is the switch duty cycle; α is the instantaneous phase angle of the mains voltage, Vinrms is the 
input RMS voltage value, IL_PK is choke current sinewave peak value and Vout_AVE is the averaging bulk DC 
output voltage. 
 
In case of constant power load, the transfer function of G3(s) is:  

outAVEout

inrms

rmsL

out

out

out

rmsL

out

sCV
V

I
I

I
V

I
V

sG 1)(
___

3 ⋅=
∆
∆

⋅
∆
∆

=
∆
∆

=       (19) 

 

4.2 Small signal transfer function of ∆Vout/∆(M1M2) for voltage loop analysis 
There is a internal feedback from Vout to G2(s). this inner loop has to be solved to obtain the transfer 
function of ∆Vout/∆(M1M2). Rewrite the equation (14) at input voltage RMS point: 
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making a perturbation on IL_rms, (M1M2), Vout, then 
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replacing ∆IL_rms by ∆Vout/G3(s) according to voltage loop block diagram,  
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then the transfer function of dVout/dVcomp is  
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4.3 Nonlinear block GNON(s) 
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The Vcomp voltage is sent to nonlinear gain block. The output of nonlinear is two internal variables, M1 and 
M2. The two variables are used to define boost choke current amplitude IL as in equation (14). The 
characteristic of nonlinear gain block is shown in Table 1 and Figure 12. The small signal gain between 
∆(M1*M2) and ∆Vcomp can be derived as well at different operating point.  
 

Vcomp M1 M2 M1*M2 
0 0.048 1.330E-02 6.384E-04

1.5 0.048 1.330E-02 6.384E-04
1.85 0.0517 1.920E-02 9.926E-04

2 0.0551 3.860E-02 2.127E-03
2.5 0.101 1.790E-01 1.808E-02

3 0.184 3.350E-01 6.164E-02
3.5 0.316 5.080E-01 1.605E-01

4 0.477 7.160E-01 3.415E-01
4.5 0.629 9.830E-01 6.183E-01

5 0.752 1.368E+00 1.029E+00
5.5 0.846 1.879E+00 1.590E+00
5.6 0.888 1.968E+00 1.748E+00

6 0.906 1.982E+00 1.796E+00
6.5 0.906 1.987E+00 1.800E+00

7 0.906 1.987E+00 1.800E+00
 

Table 1 nonlinear block characteristic data 
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Figure 12 The characteristics of nonlinear block 

 
 

4.4 Error Amplifier compensation G1(s) 
 
The circuit of error amplifier compensation circuit is shown in Figure 13. The sensing voltage Vsense is 
compared to internal reference voltage 5V typical. The difference between Vsense and internal reference is 
sent to transconductance error amplifier and converted to a current source to charge or discharge the RC 
components in Vcomp Pin. 
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Figure 13 Error Amplifier compensation G1(s) 

 
The transfer function is: 
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where, gOTA1 is the trans-conductance of OTA1, 42uS typically for ICE1PCS01. 
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The pole and zero are to regulate the overall voltage loop with the cross-over frequency below 100Hz and 
create the phase margin for the loop stability. 

4.5 Feedback G4(s) 
 
The Feedback block is a simple voltage divider to monitor the bulk capacitor output voltage. The circuit is 
shown in Figure 14. 
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Figure 14 bulk voltage sensing divider 
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4.6 Overall Open Loop Transfer Function GV(s) 
 
With combining all of the blocks above, the overall open loop gain for voltage loop is equal to:  
 

)()()()()( 4231 sGsGsGsGsG NONV =          (28) 
 
Due to PF requirement, inherent PFC dynamic voltage loop compensation is always implemented with low 
bandwidth in order not to make the response for 2*fL ripple. For example, for 50Hz AC line input, PFC 
voltage loop bandwidth is normally set below 20Hz. The compensation circuit R4, C2 and C3 are used to 
optimize the loop gain and phase margin. 
 

4.7 Enhance dynamic response 
As mentioned in Section 4.6, the inherent low bandwidth of voltage loop in PFC application will lead to slow 
response in case of sudden load step and result in large output overshoot or drop. Enhance dynamic 
response feature is integrated in ICE1PCS01 to have a fast response in the case of load step. The voltage 
loop with including enhance dynamic response block is shown in Figure 15. 
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VoutBoost converter
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-
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5V

400V
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Vcomp_DC
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M1M2
+

+/-
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Figure 15 voltage loop block diagram including enhance dynamic response 

When Vsense voltage variation is within -5% to +5% of nominal value, there is no function of enhance 
dynamic response block. However, when Vsense variation is out of such +/-5% range, enhance block will 
add offset voltage on top of Vcomp voltage to influence the current amplitude.  
 
For Vsense variation < -5% of nominal value, the offset voltage is +2V maximum. For Vsense variation > 
+5% of nominal value, the offset voltage is -4V minimum. The timing diagram of enhance dynamic response 
operation is shown in Figure 16 with sudden load jump situation. It can be seen that during enhance dynamic 
operation, the high current of boost choke is delivered for fast response. Within half sinusoidal period, when 
Vsense operating around the boundary of -5% threshold, the first part of boost choke current follows high 
amplitude profile due to enhance mode offset and the rest of boost choke current come back to low 
amplitude profile without enhance mode offset. When Vsense voltage is pulled back within +/-5% range, 
enhance dynamic offset disappear and boost choke current waveform will stay as perfect sinusoidal shape. 
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Figure 16 timing diagram for enhance dynamic operation 
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5 Design Example 
 
Assuming a 300W application with universal input AC voltage 85~265VAC,  
 
constant power load 
efficiency=88% 
Vout=400VDC 
Cout=220uF/450V 
fSW=125kHz 
Rsense=0.1ohm 
Boost choke inductance L=1.2mH 
Vsense divider: R1=390kohm*2=780kohm, R2=10kohm 
 

5.1 Vcomp and M1, M2 value at full load condition 
(1) 85VAC: 
 
RMS AC input current under full load: 

A
V
P

I
inrms

out
rmsL 01.4

8588.0
300

85_
85__ =

⋅
=

⋅
=
η

       (29) 

From equation (14), 

438.1
85183.9

4001.0701.4

85_

185__
8521 =

⋅
⋅⋅⋅

==
inrmsFQ

outsensermsL
VAC VK

VRKI
MM      (30) 

 
From table 1 and Figure 12, it can be obtained 

Vcomp M1 M2 M1*M2 
5 0.752 1.368E+00 1.029E+00

5.5 0.846 1.879E+00 1.590E+00
 
With Linear approximation: 

VV

VV
MMMM

MMMM
VV

comp

compcomp
VcompVcomp
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The small signal gain of nonlinear block is 
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122.1
55.5
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VACNON VV
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The inherent pole of f23 is  
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f
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(2) 265VAC 
 
RMS AC input current under full load: 

A
V
P

I
inrms

out
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⋅
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       (36) 

From equation (14), 
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From table 1 and Figure 12, it can be obtained 

Vcomp M1 M2 M1*M2 
3 0.184 3.350E-01 6.164E-02

3.5 0.316 5.080E-01 1.605E-01
 
With Linear approximation: 
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The small signal gain of nonlinear block is 
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The inherent pole of f23 is  
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5.2 Current Averaging Circuit 
 
With gOTA2=1.1mS from Datasheet, M1@85VAC, and assuming fAVE=24kHz which is 5 times less than 
switching frequency 125kHz, then 
 

nF
E

E
fK

Mg
C

AVE

VACOTA
icomp 86.0

32427
821.031.1

21

8512 =
⋅⋅
⋅−

=
⋅

≥
ππ

       (43) 

 
Select Cicomp=1nF 
 

5.3 Current Loop Regulation 
 
Insert M1 and M2 value in equation (11). The amplitude and phase angle of GC(s) is shown in Figure 17 to 
verify the stability of current loop and the requirement of fC less than switching frequency. 
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Figure 17 The bode plot and phase angle for current loop 

 
The cross over frequency and phase margin are 2kHz and 85º for 85VAC, and 11kHz and 35º for 265VAC. 
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5.4 Voltage Loop Regulation 
 
From the above sections, it can be obtained: 
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The open loop gain for voltage loop is to times all above factors together as: 

)()()()()( 4231 sGsGsGsGsG NONV =  
 
G1(s) is used to provide enough phase margin and also limit the bandwidth below 20HZ. R4, C2 and C3 can 
be chosen as required. fCZ normally select to be compensate the pole in G23(s). fCP normally select to be 
40~70Hz in order to fast put down the gain amplitude and reject the high frequency interference. In this 
example f23 is equal to 1.5406Hz at 85VAC and full load and 1.5412Hz at 265VAC and full load respectively. 
So the initial target is: fCZ is chosen to be close to 1.5Hz, and fCP is chosen to be 50Hz. 
 
C2 and C3 is calculated to obtain Gv(s) cross over frequency around 10Hz. The gain amplitude of 
GNON*G23*G4 in 85VAC and full load is shown in Figure 18. It can be seen that at f=10Hz, the gain is about -
4.52dB. So G1 should provide the gain +4.52dB at f=10Hz. Considering that C2>>C3 due to fcz<fcp and 
10Hz>>1Hz=fCZ, then  
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3.97uF is not common for ceramic type capacitor. So select C2=1uF, then fCZ is recalculated as: 
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select R4=33kΩ, and Hz
CR
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fCP 50
2
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1
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ππ

 

 

nF
RHz
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1

4
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⋅⋅
=

π
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select C3=100nF 
 
The gain amplitude and phase angle of overall voltage loop GV(s) at 85VAC and 265VAC in full load 
condition is shown in Figure 18 and Figure 19. At 85VAC, the cross over frequency fV is around 8.5Hz and 
the phase margin is about 62º. At 265VAC, the cross over frequency fV is around 14Hz and the phase 
margin is about 63º.  
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Figure 18 the bode plot and phase angle for voltage loop at 85VAC and full load 
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Figure 19 The bode plot and phase angle for voltage loop at 265VAC and full load 
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